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Abstract
Aging and chronic hypertension are associated with dysfunction 
in vascular smooth muscle, endothelial cells, and neurovascular 
coupling. These dysfunctions induce impaired myogenic  
response and cerebral autoregulation, which diminish the  
protection of cerebral arterioles to the cerebral microcirculation 
from elevated pressure in hypertension. Chronic hypertension 
promotes cerebral focal ischemia in response to reductions in 
blood pressure that are often seen in sedentary elderly patients 
on antihypertensive therapy. Cerebral autoregulatory dysfunction 
evokes Blood-Brain Barrier (BBB) leakage, allowing the  
circulating inflammatory factors to infiltrate the brain to activate 
glia. The impaired cerebral autoregulation-induced inflammatory 
and ischemic injury could cause neuronal cell death and synaptic 
dysfunction which promote cognitive deficits. In this brief review, 
we summarize the pathogenesis and signaling mechanisms of  
cerebral autoregulation in hypertension and ischemic stroke-induced 
cognitive deficits, and discuss our new targets including  
20-Hydroxyeicosatetraenoic acid (20-HETE), Gamma-Adducin 
(Add3) and Matrix Metalloproteinase-9 (MMP-9) that may con-
tribute to the altered cerebral vascular function.
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Abbreviations
BBB             :     Blood-Brain Barrier
20-HETE     :      20-Hydroxyeicosatetraenoic Acid 
Add3            :      Gamma-Adducin

MMP-9          :     Matrix Metalloproteinase-9
CBF               :     Cerebral Blood Flow

VSMCs         :     Vascular Smooth Muscle Cells

CPP               :     Cerebral Perfusion Pressure 

NO                :     Nitric Oxide

EETs              :     Epoxyeicosatrienoic Acids

VGCC           :     Voltage-Gated Calcium Channels

TRPM4         :     Transient Receptor Potential Channel of

                             Melastatin Subfamily Four

TRPC6          :     Transient Receptor Potential Canonical

                             Subfamily Six

PKC              :     Protein Kinase C

CO                 :     Carbon Monoxide

H+                :     Hydrogen Ion

K+                :     Potassium Ion

KATP            :     Adenosine Triphosphate Potassium

ATP               :     Adenosine Triphosphate Channel

MCAO          :     Middle Cerebral Artery Occlusion

NOS              :     Nitric Oxide Synthase

A2R               :     Adenosine 2A Receptor

VCI               :     Vascular Cognitive Impairment

VaD               :     Vascular Dementia

AD                 :     Alzheimer’s Disease
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BP                :      Blood Pressure

AA               :      Arachidonic Acid

ROS             :      Reactive Oxygen Species

NF-kB          :      Nuclear Factor kappa-B

ICAM-1       :      Intercellular Adhesion Molecule 1

VCAM-1     :      Vascular Cell Adhesion Protein 1

SS 	       :      Salt Sensitive

CNS 	       :      Central Nervous System

SAH 	       :      Subarachnoid Hemorrhage

FHH 	       :      Fawn-Hooded Hypertensive

MMP 	       :      Matrix Metalloproteinase

KO 	       :      Knockout

Introduction
Approximately 795,000 strokes occur in the US each year, and 
there are many survivors [1]. Most of the survivors suffer from 
neurological damage resulting in significant limitations of daily 
life. The annual cost to treat stroke survivors is approximately 40 
billion dollars in the US and is projected to rise [2]. Approximately 
87% of strokes are ischemic [3]. Risk factors for ischemic stroke 
include aging, hypertension, diabetes, obesity especially with  
increased waist-to-hip ratio, dyslipidemia, smoking, chronic kidney 
disease, and other cardiovascular diseases [4]. The mechanisms 
that link aging, hypertension, stroke and cognitive impairments 
are not fully understood. There is an urgent need to understand 
the pathogenesis and discover novel drug targets for prevention 
and treatment of these devastating diseases. In this brief review, 
we aim to explore the cerebral autoregulatory signal mechanism 
and its pathogenesis in hypertension and ischemic stroke-induced 
cognitive deficits. We discuss new targets including 20-Hydrox-
yeicosatetraenoic acid(20-HETE), Gamma-Adducin(Add3) and 
Matrix Metalloproteinase-9 (MMP-9) that may contribute to the 
regulation of cerebral vascular function

Materials and Methods
A systemic review of the current literature was performed. We searched 
MEDLINE,  PubMed , Web of Science, and Google through June 2017 
using keywords “Cerebral autoregulation, Stroke, Hypertension, 
Vascular Dementia, 20-HETE, adducin, Matrix Metalloproteinase”. 
All literature in English was reviewed excluding case-reports, and 
commentaries. References of included articles were further  
explored.

Discussion
Autoregulation of cerebral blood flow

Cerebral Autoregulation was first studied by NA Lassen in 

1959 [5]. Thereafter the definition has been broadly utilized in  
explaining global perfusion changes or local circulatory changes 
[5,6]. Autoregulation of Cerebral Blood Flow (CBF) is a critical 
homeostatic mechanism that protects the brain from elevations 
in capillary hydrostatic pressure, vascular damage and cerebral 
edema following elevations in systemic pressure and from  
ischemic injury in response to embolization or hypotension [7]. It 
is generally accepted that autoregulation of CBF is mediated by 
an interplay between the myogenic response in Vascular Smooth 
Muscle Cells (VSMCs) acting in concert with the release of 
vasodilatory metabolic mediators from the surrounding hypoxic 
brain tissue when Cerebral Perfusion Pressure (CPP) is reduced 
[8,9]. In response to elevations of transmural pressure in the brain, 
half of the pressure drop across the cerebral circulation occurs 
in large arteries [7,10-12], which attenuate 75% of increases in 
CPP from reaching small pial arteries, and the small pial arterioles 
 and penetrating arterioles account for the remainder of the  
autoregulation of CBF and capillary pressure [7,13]. On the other 
hand, in response to the reduction in CPP, the large cerebral arteries 
dilate as part of the initial cerebral autoregulation. Next, pial and 
penetrating arterioles, then small pial arterioles dilate following 
modest to severe reductions in systemic pressure [13,14], and this is 
mediated by the release of metabolic dilators from the surrounding 
hypoxic brain tissue including Nitric Oxide (NO), adenosine, 
prostaglandins and Epoxyeicosatrienoic acids (EETs) [15-17].

Regulating factors and signaling mechanisms of cer-
ebral autoregulation

Myogenic response: The pressure-dependent myogenic response 
of cerebral vasculature is an intrinsic property of VSMCs since it 
can readily be demonstrated in de-endothelialized cerebral arterioles 
in vitro [18]. The myogenic response involves depolarization of 
VSMCs and calcium influx through L-type Voltage-Gated Calcium 
Channels (VGCC), Ca++/calmodulin-dependent phosphorylation, 
activation of myosin light chain kinase and actin-myosin based 
contraction [19,20]. There is evidence that Mechanotransduction 
involves an interaction of cell surface integrins with extracellular 
matrix proteins. Indeed, blockade of integrins inhibits calcium 
currents in VSMCs and myogenic tone of skeletal muscle arterioles 
[21,22]. Recent studies have suggested that the initiation of the 
myogenic response probably involves activation of nonselective 
stretch-activated cation channels, such as Transient Receptor 
Potential Channel of Melastatin Subfamily Four (TRPM4), and 
Transient Receptor Potential Canonical Subfamily Six (TRPC6) 
channels via Protein Kinase C (PKC) dependent pathway that 
depolarizes VSMCs past the threshold for activation of VGCCs 
[20,23-28]. In addition, activation of Stretch Activated Channels 
(SOC) and local changes in intracellular Ca++ activates the large 
conductance calcium-activated potassium (BK) channels [19,20], 
that hyperpolarize VSMCs which inactivates the L-type VGCCs 
and limits the myogenic response.

Metabolic mechanisms: Cerebral autoregulation is influenced by 
the release of vasodilatory mediators from the endothelium and 
surrounding parenchymal tissue in response to the reduction of 
CPP. These mediators include NO, Carbon Monoxide (CO), pros-
taglandins, prostacyclin, EETs, adenosine, Hydrogen ion (H+), and 
Potassium ion (K+) and Adenosine Triphosphate (ATP). The  
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release of these compounds is determined by the balance between 
the steady state energy metabolism, dynamic fluctuations in neu-
ronal activity, arterial PCO2 and arterial O2 content. In this regard, 
release of adenosine [29-31], activation of Potassium Adenosine 
Triphosphate Channel (KATP) channels [32-35] and release of 
glutamate leading to increased production of NO have all been 
reported to contribute to the dilation of pial arterioles associated 
with hypoxia and ischemia of cerebral tissue following Middle 
Cerebral Artery Occlusion (MCAO) [33]. However, most of 
these mediators do not contribute to the metabolic component of 
autoregulation following CPP reduction within the autoregulatory 
range in which the tissue is not ischemic. Similarly, blockade 
of Nitric Oxide Synthase (NOS) and prostaglandins have little 
or no effect [36-40] on CBF following reductions in CPP in the 
autoregulatory range. Whereas, reductions in CPP within the 
autoregulatory range does increase tissue adenosine levels [41] 
and blockade of Adenosine Deaminase or Adenosine 2A Receptor 
(A2R) receptors attenuates the vasodilatory response of pial  
arterioles [39,42]. These results indicate that tissue hypoxia is not 
required for the release of adenosine. Indeed, adenosine is generated 
by ecto-nucleotidase enzymatic breakdown of ATP released by 
neurons and astrocytes [43]. Thus, perivascular generation of 
adenosine appears to be one of the best candidates that contribute 
to “metabolic” vasodilation following decreases in CPP.

Hypertension, ischemic stroke and cerebral autoreg-
ulation

Hypertension is one of the leading causes of morbidity and mortality 
regardless of the type of stroke [44]. Cerebral autoregulation 
is often impaired in hypertensive and aging individuals and  
contributes to the development of stroke, Vascular Cognitive 
Impairment (VCI) and Vascular Dementia (VaD) [45-47]. Loss of 
cerebral autoregulation should increase transmission of pressure 
to cerebral capillaries resulting in BBB leakage, cerebral edema, 
inflammation, and neuron degeneration that are commonly seen in 
patients with VCI [6,46-49]. Chronic hypertension also promotes 
capillary rarefaction, especially in the deep hemispheric white 
matter and basal ganglia [46,50]. It is associated with infiltration of 
perivascular macrophages, increased oxidative stress, endothelial 
dysfunction, and compromised functional hyperemia [48,51]. 
These changes promote the formation of small lacunar infarcts, 
white matter hyperintensities, microinfarcts, and microbleeds, 
all of which are correlated with a decline in cognitive function 
in patients with VaD and Alzheimer’s Dementia (AD) [52,53]. 

Trials in ischemic stroke have demonstrated that both high and 
lower systolic blood pressure is associated with poor outcomes 
[54]. The blood pressure plot vs outcomes of ischemic stroke in 
two different studies demonstrated a ‘U shape’ curve, and a better 
outcome only exhibited within a very narrow range of Blood 
Pressure (BP) between 150 mm Hg [54] and 180 mm Hg recorded 
at the time of the first encounter in emergency [55]. These results 
along with other studies suggest that increased sympathetic drive 
is necessary during and immediately after acute stroke attack to 
maintain a normal cerebral autoregulation for the maintenance 
of adequate tissue perfusion and expect a better outcome of 
stroke [54,56,57]. This hypothesis has been confirmed in many  

experiments that rapid drop in BP may result in extended infarction 
due to perilesional ischemia [55,58,59] and increased risk of  
hemorrhagic transformation [60] in stroke patients with preexhibited 
cerebral autoregulatory dysfunction, which later results in the 
pathogenesis of cognitive deficits including vascular dementia [61].

Genes contributing to cerebral autoregulation 

Many factors including the role of endothelial dysfunction and 
hyperemia have been implicated in the regulation of cerebral 
autoregulation [18,19]. Recent studies have also revealed that 
several genes may be involved in the myogenic response of cer-
ebral arteries and autoregulation of CBF that may contribute to 
the pathogenesis of ischemic stroke and cognitive impairment in 
hypertension and aging. In this review, we focus on the role of 
20-HETE, adducin and MMP. 

Cytochrome P450 (CYP) 4A and 4F: Enzymes of CYP4A and 
CYP4F catalyze Arachidonic Acid (AA) to produce 20-HETE. In 
the Central Nervous System (CNS), 20-HETE is produced primarily 
in the VSMCs, neurons, and astrocytes [62-64]. It is a potent 
vasoconstrictor that potentiates the response to angiotensin II and 
endothelin and ATP, as well as vascular hypertrophy, endothelial 
dysfunction, angiogenesis, inflammation, apoptosis and platelet 
aggregation [18-20]. Plasma level of 20-HETE level in plasma 
increases after acute ischemic stroke [65]. A higher level of  
20-HETE promotes inflammation by the production of Reactive 
Oxygen Species (ROS) and Nuclear Factor kappa-B (NF-kB) 
in the cerebral vasculature [66]. It also increases cytokines  
production and expression of adhesion molecules Intercellular  
Adhesion Molecule 1 (ICAM-1) and Vascular Cell Adhesion Pro-
tein 1 (VCAM-1) on B-lymphocytes [67,68] and endothelial cells 
[69,70] which further promotes margination of macrophages and 
enhancing inflammatory cascade. Functional genetic variants in 
CYP4F2 and CYP4A11 that decrease the formation of 20-HETE 
are linked to hypertension [71,72] and stroke [19,20,73]. Results 
from animal studies are consistent with these findings in patients. 
The formation of 20-HETE is reduced in the cerebral vasculature 
of Dahl Salt Sensitive (SS) rats, and these rats exhibit impaired 
myogenic response of cerebral arteries and autoregulation of CBF, 
as well as an increase of BBB leakage in response to elevations 
in cerebral perfusion pressure [74]. Transfer of wild type CYP4A 
genes in a chromosome 5 consomic strain or introduction of a 
wild type of CYP4A1 gene in a transgenic SS strain, restores the 
production of 20-HETE, autoregulation of CBF and rescues BBB 
leakage [74]. Recent epidemiological studies have shown associa-
tions between genetic variants in the genes that produce 20 HETE 
with stroke [73], and cognitive impairment [75]. Furthermore, 
20-HETE is associated with unfavorable outcome in Subarachnoid 
Hemorrhage (SAH)  patient, likely from acute and delayed cerebral 
vasospasm after (SAH) [76].

Adducin: Adducin is a cytoskeletal protein that comprises of 
heterodimers of Alpha-adducin (Add1) with either Beta-ad-
ducin (Add2) or Gamma-adducin (Add3). It plays roles in the 
organization of cytoskeletal structure, cell to cell contact and 
cell migration and signal transduction [77]. The heterodimers 
of Add1 and Add3 protein promotes actin-spectrininterac-
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tions and regulates actin polymerization [77,78]. Functional 
variants of Add1 have been linked to the development of hypertension  
in Milan hypertensive rats and humans [79] by altering the  
localization of plasma membrane and activity of Na+/K+-ATPase 
[80]. More recently, our lab has identified a genetic variant of 
Add3 in Fawn Hooded Hypertensive (FHH) rats that are associated 
with impaired myogenic response and autoregulation of renal 
and cerebral blood flow [81-83]. In addition, knockdown of 
Add3 expression in both renal and cerebral arteries in normal rats 
diminishes their myogenic responses ex vivo and enhances BK 
channels activity [78]. Moreover, our recent preliminary work 
indicated that downregulation of Add3 in FHH rats is associated 
with an elevation in transmission pressure in the terminal of  
arteries and the susceptibility of cognitive impairments following 
the development of hypertension with age [84].

Matrix metalloproteinases: The Matrix Metalloproteinase (MMP) 
family of zinc-binding proteolytic enzymes degrade collagen and 
fibronectin [85]. They regulate neutrophil migration across the 
basement membrane and play an important role in angiogenesis 
and extracellular matrix remodeling associated with various 
physiological or pathological processes [86,87]. MMPs are known 
to play a role in the pathogenesis of atherosclerosis, coronary artery 
disease and cerebral vascular injury [88,89]. The expression of MMP-
2 and MMP-9 are increased in neurons, astrocytes, and microglia 
[90] following ischemic stroke and intracerebral hemorrhage. 
Inhibition of MMP-9 reduces infarct size in ischemic stroke rat 
models [91,92]. MMP9 polymorphisms have been reported to 
significantly increase the risk of ischemic stroke in Type 2 diabetes 
[93], and are associated with detrimental functional outcomes in 
altering the severity of infarct size after the onset of ischemic 
stroke [89,94]. Moreover, thrombolysis (t-PA) has been reported 
to enhance MMP-9 release which further enhances neuronal 
damage resulting in edema and hemorrhagic transformation [95]. 
MMP9  is associated with mild cognitive impairment and VCI 
[96-98]. Whereas, treatment with human cord plasma containing 
MMP-2 inhibitor restores the hippocampal function and improves 
cognition in aged mice [99].

The role of MMPs in hypertension and ischemic stroke-induced 
cognitive deficits is multifactorial. Mechanistically, MMPs activate 
migration and proliferation of VSMCs [85,89], and facilitate  
inflammation and perivascular fibrosis [100]. Whether they regulate 
cerebral autoregulation has not been elucidated. Elevated levels 
of MMP-9 have been found in SS rats, inhibition of MMP-9  
reduces oxidative stress and endothelial dysfunction and attenuates 
cerebrovascular dysfunction in this strain after the development 
of hypertension [101]. Knockout (KO) of MMP-9 protects against 
ischemic and traumatic brain injury in mice and is mediated by 
reduced BBB leakage and white matter damage [85]. Results 
from our recent studies in MMP-9 KO SS rats are consistent with 
these findings. Furthermore, we found that the impaired myogenic 
response and autoregulation of CBF in hypertensive SS rats are 
restored in the MMP-9 KO strain [102]. Inhibition of MMP-9 now 
is examined as a therapeutic strategy in ischemic stroke [103].

Conclusion
Cerebral vascular dysfunction is a rising concern that contributes 

to cognitive impairments, including Alzheimer’s disease and 
vascular dementia. Hypertension and ischemic stroke-induced 
cognitive deficits are often associated with impaired myogenic 
response and autoregulation of CBF. Genetic variants in genes 
involved in regulation of cerebrovascular function are linked to 
hypertension, stroke, and dementia. Understanding the vascular 
pathogenesis may help to explore novel drug targets to delay the 
onset and prevent the progression and severity of these currently 
incurable diseases.
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